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Abstract
We present a novel theoretical approach to understanding the complex dynamics
of glass-forming liquids, granular packings and amorphous solids. This theory,
which is an elaboration of the free volume and inherent structure approaches,
allows one to retrieve the thermodynamical properties of these systems from
studies of geometrical and topological properties of local, static configurations
alone. When applied to hard-sphere systems, the present theory reproduces
with a good quantitative agreement the equation of state for the crystalline and
the disordered glassy phases. Moreover, we find that, as the density approaches
a critical value close to the random close-packing density, the configurational
entropy approaches zero and the large relaxation time diverges according to the
Vogel–Fulcher behaviour, following also the Adam–Gibbs relation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Several natural and artificial systems, such as granular materials, glasses, cellular systems and
foams, present complex dynamical and structural properties despite the inner simplicity of their
fundamental elements [1]. In the context of glasses, there are many valuable theories based on
free volume [2], cooperative rearrangements of particles [3], the inherent structures approach
[4–6], mode coupling theory [7] and replica theory [8]. Here we develop a novel approach
(which combines some of the features of the free volume [2] and the inherent structures
approaches [4]) where we derive the structural and dynamical properties of large systems of
interacting particles from the local geometrical properties of space-filling sets of cells. This
approach can be applied to a broad variety of systems: from foams to van der Waals systems,
from granular packings to colloid suspensions. In this paper we discuss in detail the case of
identical hard spheres, which is a good model system for granular media and has been widely
studied in order to obtain insight into the intrinsic structures of solids, liquids and glasses,
to investigate biological tissues and to understand the bare nature of disorder [9–11]. For
this system, we retrieve quantitatively the equation of state for the glass and crystal phases.
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We find that the relaxation time diverges as the density approaches the random close-packing
limit [9, 12], following both the Vogel–Fulcher–Tammann law and the Adam–Gibbs relation.

2. Energy landscapes and inherent structures

A useful concept in glass theory based on the energy landscape was introduced by Goldstein in
1969 and later developed by Stillinger and Weber [4]. The energy landscape is associated with
the potential energy U({ri}) as a function of the 3N particle coordinates. This energy landscape
is characterized by deep minima. The idea is that in supercooled liquids at low temperatures, the
particles vibrate around these deep minima, with some jumps from one minimum to another. In
molecular dynamics simulations these minima, called ‘inherent structures’ [4], can be obtained
by minimizing the energy starting from the liquid equilibrated at a given temperature [5]. If
the minima are labelled by the index α and Fα is the free energy relative to the metastable
state α, the partition function Q can be written as

Q =
∑

α

e−βFα =
∑

F

�(F)e−βF , (1)

where �(F) = number of states corresponding to the free energy F and is related to the
configurational entropy Scon f (F):

Scon f (F) = ln �(F) (2)

with the equilibrium condition given by

β = ∂Scon f (F)

∂ F
. (3)

The configurational entropy has been evaluated for interacting particles by using both
analytic [13] and molecular dynamics techniques [6, 13]. It was found that Scon f at low
temperature is a decreasing function of the temperature and can be extrapolated to zero at a
temperature TK , as expected by Kauzmann’s argument.

3. The Adam–Gibbs approach

Adam and Gibbs have provided an interesting connection between kinetics and
thermodynamics, by introducing the concept of cooperatively rearranging regions. According
to this phenomenological theory, at low temperature, relaxation can only occur if an entire
region of minimum size undergoes a cooperative rearrangement. Since this minimum size can
be related to the inverse of the configurational entropy, it follows that the relaxation time τ can
be expressed as

τ ∼ A exp

(
B

T sc

)
, (4)

where sc = Scon f /N is the configurational entropy per particle and A and B are constants. If
sc goes linearly to zero at the Kauzmann temperature TK , at the first order in T − TV F , one
recovers the Vogel–Tammann–Fulcher relation [14]:

τ ∼ A exp

(
B ′

T − TV F

)
, (5)

with TV F = TK .
In this way the Adam–Gibbs theory predicts that if there is a thermodynamical transition

where the configurational entropy goes to zero, then at this temperature the relaxation time—or
the viscosity—diverges according to the Vogel–Tammann–Fulcher relation, as found in many
glass formers.
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4. Cell theory for dense liquids

We present here an approach introduced recently by us [15] to treat high-density liquids and
to study the glass transition. This theory combines aspects of the free volume theory and the
energy landscape approach. We consider first the free volume theory [17].

Let us first write down the configurational partition function of a system of N particles:

Q(N, V , T ) = Z

N!�3N
, (6)

with � = h/(2πmkT )1/2 and

Z =
∫

dr1 · · ·
∫

drN e−βU(r1,...,rN ), (7)

where U(r1, . . . , rN ) is the potential energy. We observe that the integral over the whole
volume can be written as a sum of integrals over a set of cells Cli :∫

V
dri =

N∑
li=1

∫
Cli

dri . (8)

Therefore, the configurational integral becomes

Z =
N∑

l1=1

· · ·
N∑

lN=1

∫
Cl1

dr1 · · ·
∫

ClN

drN e−βU(r1,...,rN ). (9)

We now observe that these integrals can be written in terms of the occupation numbers mi

(number of particles in each cell Ci , 0 � mi � N), leading to

Z =
N∑

m1=0

· · ·
N∑

mN=0

N!

m1! · · · m N !
Z(m1, . . . , m N ), (10)

(with the constraint
∑

i mi = N). Here, Z(m1, . . . , m N ) is the contribution to the
configurational integral of a system with m1 spheres in the first cell, m2 in the second etc:

Z(m1, . . . , m N ) =
m1︷ ︸︸ ︷∫

C1

· · ·
∫

C1

· · ·
mN︷ ︸︸ ︷∫

CN

· · ·
∫

CN

e−βU(r1,...,rN ) dr1 · · · drN . (11)

The case where the cells are all singly occupied (m1 = m2 = · · · = m N = 1) contributes to Z
with

Z (1) = Z(1, . . . , 1) =
∫

C1

· · ·
∫

CN

e−βU(r1,...,rN ) dr1 · · · drN ; (12)

whereas the relative contribution with the cells multiply occupied is given by

σ N =
N∑

m1=0

· · ·
N∑

mN =0

1

m1! · · · m N !

Z(m1, . . . , m N )

Z(1, . . . , 1)
(13)

(with
∑

i mi = N).
From the previous definitions of Z (1) and σ , we can write

Z = N!Z (1)σ N . (14)

If (as in the crystalline state at high densities with the cells constructed around the lattice
positions) multiple occupancy of any cell is excluded, all of the Z(m1, . . . , m N ) are zero except
Z (1) and therefore

σ = 1. (15)
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In the opposite limit, when the particles are free to move among the cells,

σ N → N N

N!
∼ eN . (16)

This quantity σ is called the ‘communal entropy’ and we have seen that it has the value
σ = 1 for a crystal and σ = e for a dilute gas, and it assumes some intermediate values in the
liquid state.

5. Free volume and Hartree-like approximation

So far we have not made any approximations and equation (14) is an exact alternative way to
write the configurational integral Z . However, to calculate these quantities, one must introduce
some approximations. Let us now introduce a Hartree-like approximation by writing Z (1) as
a product of quantities associated with each cell Ci :

Z (1) =
∫

C1

· · ·
∫

CN

e−βU(r1,...,rN ) dr1 · · · drN � z1z2 · · · zN ; (17)

it can be shown that [17]

−kT ln Z (1) �
N∑

i=1

[
εi − kT ln

ui

�3

]
,

where εi is the average potential energy in the cell Ci due to all other particles and ui is the
‘free volume’: the volume available in the cell Ci with an appropriate weight depending on
the interacting potential of the other particles [16, 17]. A similar approximation for σ leads to

σ N �
∏

i

1

Pi
(18)

where Pi is the probability that cell Ci is singly occupied.
In conclusion, the free energy can be written as

F �
∑

i

[
εi − kT

(
ln

ui

�3
− lnPi

)]
.

This approximate expression is based on the implicit assumption that the cellular partition
is constructed around the equilibrium position of the particles [15, 17]. This holds good for
a crystal, but not for a dense liquid or a glass where distinct configurations contribute with
similar weights to the system free energy.

6. Cell theory for highly dense liquids and glasses

For a highly dense liquid we need a cellular partition which reflects the structure of the
metastable states of the potential landscape. To this end, we write the configurational partition
function as a sum over the metastable states labelled ‘α’. These states are the points in the
3N-dimensional configurational space {rα

1 , . . . , rα
N } in which the probability of finding the

particles is locally a maximum (inherent states [4]):

Q =
∑

α

e−βFα

. (19)

For a given state α, we divide the volume V into N cells Cα
1 , . . . , Cα

N constructed around the
positions rα

1 , . . . , rα
N . In this way we associate with each state α a space partition. Following

the previous formalism, for each state α under the Hartree-type approximation we can write

Fα �
∑

i

ε(nα
i ) − kB T

[
ln

u(nα
i )

�3
− ln P(nα

i )

]
, (20)
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where the symbol nα
i represents the set of parameters which carries the complete information

about the geometrical and topological properties (size, shape, . . .) of cell Cα
i ; ε(nα

i ) is the
energy contribution from a particle in the cell Cα

i ; u(nα
i ) is the ‘free volume’ associated

with the cell Cα
i ; and P(nα

i ) is the probability of finding cell i singly occupied. Note that
the free energy depends only on the distribution Nα(n): the number of cells, in the space
partition α, characterized by the set of geometrical and topological parameters n (therefore
Fα = F({Nα(n)})). It follows that the sum over the states α in equation (19) can be written
as a sum over the space partitions {Nα(n)} associated with these states:

Q =
∑

α

e−βF({Nα(n)}) =
∑

{N(n)}
�({N(n)})e−βF({N(n)}), (21)

where �({N(n)}) counts the number of distinct space partitions made with the set {N(n)}
and is related to the configurational entropy:

Scon f = ln �. (22)

A rough approximation gives

�({N(n)}) � N!∏
n N(n)!

(23)

which is an upper bound for �, since some of these combinations do not generate space-filling
assemblies.

The distribution N∗(n) can be now evaluated by minimizing the free energy:

N∗(n)

N
= u(n)

�3P(n)
exp[−βε(n) − θv(n) − λ]. (24)

Here, the two parametersλ and θ are Lagrange multipliers which are fixed by the two constraints∑
n

N∗(n) = N (25)

and ∑
n

v(n)N∗(n) = V . (26)

Using this distribution, the free energy is given by

ln Z

N
= −β

∑
n

N∗(n)

N

[
ε(n) − kT

(
ln

u(n)

�3P(n)
− ln

N∗(n)

N

)]
. (27)

7. Application to hard spheres

In these systems, the relevant parameter is the density ρ, which is the volume occupied by the
balls divided by the total volume.

It is known that the maximum density attainable in a packing of equal balls is
ρ = π/

√
18 = 0.7404 . . ., which corresponds to the ordered arrangement found in

face-centred cubic (FCC) crystals. This limit cannot be reached in disordered packings,
where experimentally densities around 0.64 are found in the so-called random close
packing [9, 10, 18].

There have been many studies on the nature of the hard-sphere glass transitions [19].
Experiments on colloidal systems seem to indicate a structural arrest close to a value
ρ = 0.57 [20, 21]; this transition is characterized by a power law divergence for a large
relaxation time and can be well described in terms of the mode coupling theory [22]. Molecular
dynamics simulations have shown the presence of a glass transition around such values of
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Figure 1. (a) Comparison among PV
NkB T from molecular dynamics simulations for the ordered FCC

branch (� [30]), the disordered glassy branch (� [30], ♦ [23]) and the predictions from the present
theory (full curves). (b) The same data plotted as ρ−1 versus kB T/(d3 P).

the density [23]. However, a more recent work excludes the possibility of such a transition
[24]. Other experiments on colloidal systems [25–27] show that the approach towards the
maximal disordered density is critical, with a viscosity that grows exponentially quickly
(Vogel–Tammann–Fulcher behaviour) following the free volume prediction and the Adam–
Gibbs relation. These results were also suggested on the basis of molecular dynamics data [28].

Hereafter, we apply the present theory to a system of hard spheres. We derive the equation
of state for both the glass and the crystal and show that the large relaxation time follows the
Vogel–Tammann–Fulcher behaviour and satisfies the Adam–Gibbs relation.

8. Equation of state for the ordered crystal and the disordered glass

From the results presented in section 6 (equations (24) and (27)), it is clear that in order to
calculate the distribution N∗(n) and the free energy ln Z , the only data required are the volumes
v(n), the free volumes u(n) and the caging probability P(n) (ε(n) = 0 for hard spheres) for
a set of cells associated with attainable packings of spheres. In order to explore extensively
the attainable local configurations, we generate more than 106 compact local configurations
with one central sphere and a number of neighbouring spheres in the range 5 � n � 16 placed
in a disordered fashion (but avoiding overlapping) at equal distance h0 from the central one.
Then we generate larger cells by uniformly expanding the compact ones from h0 to

√
2h0.

The distance h0 is a measure of the geometrical frustration [10, 15, 29] and it has been fixed
at h0 = 1.058 d (with d the sphere diameter). We identify the cell Cα

i with the Voronoı̈ cell
(also known as the Wigner–Seitz cell or Dirichlet region) generated by bisecting with planes
the segments between the centre of sphere i and the centres of its neighbouring spheres. For
each configuration we evaluate: (i) the volume v(ni ) of the Voronoı̈ cell; (ii) the free volume
u(ni); (iii) the caging probability P(ni).

Once we have obtained these quantities, we derive the distribution of cells from
equation (24) and therefore the free energy from equation (27), from which we obtain the
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equation of state:

P = kB T

(
∂ ln Z

∂V

)
N,T

. (28)

The comparison with data obtained from molecular dynamics simulations for hard
spheres [23, 30, 31] is shown in figure 1.

Within the framework of the present theory we can also investigate the crystalline case.
This case is simpler to treat analytically because only identical rhombic-dodecahedral cells are
involved. We have

PV

k NT
=

[
1 −

(√
18

π
ρ

)1/3]−1

. (29)

The comparison with the molecular dynamics simulation data is also shown in figure 1.

9. Relaxation time and the Adam–Gibbs relation

Using the distribution N∗(n) we calculate the escape probability

〈Pesc〉 =
∑

n

N∗(n)

N
Pesc(n), (30)

where Pesc(n) = 1 or 0 depending on whether the configuration of the cell n is such that the
external spheres allow or do not allow the sphere inside the cell to escape.

We observe that the relaxation time τ = 〈Pesc〉−1 grows by more than an order of
magnitude in the range of densities 0.5 � ρ � 0.55 and its behaviour versus density is
well described by a Vogel–Tammann–Fulcher equation:

τ ∼ A exp(B/(ρV F − ρ)) (31)

with ρV F = ρK � 0.65 (figure 2(a)).
We have also calculated the configurational entropy per particle sc:

sc = −
∑

n

N∗(n)

N
log

(
N∗(n)

N

)
, (32)

which goes to zero at the Kauzmann density ρK � ρV F � 0.65 (figure 2(b)). Moreover, we
verify that the definition of sc is consistent with the definition of the configurational entropy
as the difference between the entropies of the glass and crystalline phases (figure 2(b)).

We finally observe that the Adam–Gibbs relation

τ ∼ A′ exp(B ′/(T sc)) (33)

is followed (figure 2(a)).

10. Conclusions

In conclusion, we have presented a theory which combines some of the features of the free
volume and inherent structures approaches. Its application to hard-sphere systems, despite
the approximations involved, reproduces many of the known properties of these systems. In
particular, the results for the equation of state are in very good agreement with molecular
dynamics data. Moreover, the theory reproduces well the Vogel–Fulcher–Tammann law,
the Adam–Gibbs relations and the behaviour of the configurational entropy. This is also
in agreement with recent experiments on colloidal systems.
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Figure 2. (a) Semi-log plots of the characteristic relaxation time τα versus ρ. The curves
are fits with Vogel–Tammann–Fulcher and Adam–Gibbs behaviours (full and dotted curves).
(b) Configurational entropy versus ρ (curve) and the difference between the entropies of the
disordered and crystalline phases (♦).

We stress that a strong approximation in this work is the identification of the number
of possible configurations with the combinatorial factor N!/

∏
n N(n). This approximation

ignores the condition of space filling. To take the space-filling condition into account better,
one should go beyond the single-cell approximation and consider a larger group of cells as the
basic unit: a supercell (under the condition that the cells inside the supercell must satisfy the
space-filling condition). The larger the supercell, the better the approximation.
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